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Comparison of Experimental and Numerical Results
for Delta Wings with Vortex Flaps

Kenneth G. Powell* and Earll M. Murmanf
Massachusetts Institute of Technology, Cambridge, Massachusetts

and
Richard M. Wood^ and David S. Millerrj:

NASA Langley Research Center, Hampton, Virginia

Computational and experimental results are presented for delta wings with vortex flaps. The wings have an
undeflected leading-edge sweep of 75 deg. Flap angles of 5 and 10 deg, measured in the streamwise direction, are
considered. The nominal angle of attack is varied from 4 to 12 deg. Results for freestream Mach numbers of 1.7
and 2.4 are shown. Surface pressures and vapor screens are given for the experimental data. Surface pressures,
crossflow velocities, total pressure loss, and crossflow Mach number are given for the numerical data. C, vs a
curves are shown for experimental and computational results. The Euler equation model correctly predicts the
topology of the flow in each of the cases considered. The lift is predicted well at the higher angles of attack, but is
slightly overpredicted at the lower angles of attack.

Introduction

C OMPRESSIBLE flow past sharp-edged delta wings can
lead to a variety of flow patterns. Stanbrook and Squire1

originally postulated the classification of these flows as a
function of angle of attack normal to the leading edge and
Mach number normal to the leading edge. This classification
has been extended by Miller and Wood2 to include the
different flow topologies seen in their experiments. In ad-
dition, Vorropoulos and Wendt3 added a regime for leading-
edge vortices with crossflow shocks under them.

Interest in these flows has spread to the world of computa-
tional fluid dynamics, with the result that a number of compu-
tational studies employing the Euler equations4"8 and the
Reynolds-averaged Navier-Stokes equations7"11 have been re-
ported. Most of the experimentally observed flow regimes
have been reproduced in the various calculations.

The present study uses the conical Euler equations to model
the flow. The advantage of using the Euler equations as
opposed to the Reynolds-aver aged Navier-Stokes equations is
that they are less expensive to solve. The disadvantage is that
they do not model viscous effects, such as the boundary layer
on the wing, and the secondary separation under the primary
vortex. The conical self-similarity assumption further sim-
plifies the problem by reducing the number of dimensions.

The justification of the use of the Euler equations is based
on the fact that the geometry being modeled is sharp-edged.
Because of this, there is a Kutta condition fixing the sep-
aration point at the leading edge, independent of the
Reynolds number. Therefore, any computational model that
has a diffusive effect at the leading edge that mimics real
diffusive effects should trigger separation, regardless of the
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magnitude of the diffusion. The discretized Euler equations
are diffusive near the leading edge, due to truncation error and
added artificial viscosity. The Kutta condition will therefore
be enforced, and the discretized Euler equations should be
expected to model the separation and primary vortex very
well. Experience shows this to be the case.6'12

The justification of the use of the conical self-similarity
assumption is based on the fact that the model used in the
experiment is approximately conical and the freestream is
supersonic. The Euler equations permit a conical solution if
the boundary conditions are conical, i.e., if the bow shock and
the body can be generated by rays through the apex of the
wing. Subsonic flow is not strictly conical. For the model used
in the experiment, the upper surface of the wing and the flap
are conical; the centerbody and the lower surface are not (see
Fig. 1). Although experimental pressure distributions at differ-
ent stations along the length of the configuration are not
shown in this paper, they are essentially conical.

Flows with either leading-edge vortices or leading-edge sep-
aration bubbles are characterized by low-pressure regions on
the leeward side of the wing. A pressure distribution of this
type is desirable in that it gives high lift. On a flat wing,

Fig. 1 Experimental model.
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however, a pressure distribution of this type also implies high
drag. If it were possible to camber the wing so that the
low-pressure region resided over a portion of the wing with a
forward-facing normal, this would result in both lift and
thrust. This is the basic idea behind vortex flaps. The first
experimental demonstration of the drag-reduction potential of
vortex flaps took place at NASA Langley Research Center13

and there has been a sizable effort in vortex-flap research there
since then.14 Some preliminary computational results have
been presented by Arlinger4 and Murman et al.,6 but this
paper is the first extensive comparison of Euler solutions and
experimental data for vortex-flap geometries.

Governing Equations
The three-dimensional unsteady Euler equations in con-

servation form are
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The equation of state

and the definition of total enthalpy
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close the set of equations. Introducing the conical variables
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In the above, the unsteady terms have been included so that
an iterative procedure may be employed to reach a conically
self-similar steady state. The equations are solved on the unit
sphere by setting r = 1.

The physical boundary conditions consist of a no-flux con-
dition at the wing, freestream conditions outside the bow
shock, and a Kutta condition at the leading edge of the wing.
The third condition is enforced implicitly by the truncation
error and artificial viscosity of the numerical method. The

implementation of the other two conditions will be discussed
in the next section.

Solution Procedure
The basic solution scheme is a finite-volume spatial discreti-

zation with a multistage integration in time, as proposed by
Jameson et al.15 Local time-stepping and mesh-sequencing are
used to accelerate the convergence to steady state.

The set of partial differential equations for conical flow may
be written in the form

= 0

and is discretized as

dU

where Atj is the area, and ATJ^ and A^ are the projected side
lengths of the four sides of a computational cell. This scheme
requires added second- and fourth-difference damping to cap-
ture shocks and yield smooth solutions. The damping formu-
lation adopted follows Rizzi and Eriksson.16 The second-
difference damping is pressure-weighted, and is of the form

S2p
Mmax|^| ^

S,U + S,
max\82p\ J

where S, and Sy are undivided central-difference operators
defined by

The pressure switch is normalized to take values from zero
(low-pressure gradient regions) to one (high-pressure gradient
regions). It was found to be necessary to set the pressure
switch to one at several cells in the vicinity of the leading edge
and the hinge. The second-difference damping is proportional
to the mesh spacing. A damping coefficient of v2 = 0.05 was
used for the second-difference damping.

The fourth-difference damping is unweighted, and of the
form

It is not turned off in the vicinity of shocks, and is everywhere
proportional to the cube of the mesh spacing. A damping
coefficient of *>4 = 0.01 was used for the fourth-difference
damping.

The body boundary condition is a no-flux condition, cou-
pled with a pressure extrapolation of the form

dp=0
dn

This is implemented on the body cell faces by using the
cell-center pressure to evaluate the fluxes, keeping only the
pressure terms in the flux balance. The error in this is directly
proportional to the grid spacing and the dynamic pressure,
and inversely proportional to the radius of curvature of the
streamlines. The approximation is good both on the wing,
where the radius of curvature is zero, and on the body, where
the crossflow component of the velocity is small.

The far-field boundary condition is enforced by prescribing
an outer boundary to the computational domain such that the
bow shock lies entirely inside the computational domain.
Freestream conditions are then enforced at the outer boundary.
The bow shock is captured by the solution scheme.
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The grids are generated by solving the system

ail,,. - Iftiij + wjj = -J2 [ Pi|, +

where a = (•? + r?y
2, 0 = £/£,- + 77,-r?,, 7 = J? + 17?, 7= £,17, -

£,-!;/, and the subscripts denote differentiation with respect to
the computational coordinates. The source terms P and Q on
the body and the outer boundary are calculated to enforce
orthogonality and a specified cell aspect ratio. These source
terms are extended into the field, decaying exponentially away
from the boundaries. The method is outlined fully in Steger
and Sorenson.17 The geometry that is used for the calculations
is the cross section at 90% of the configuration length. The
conical self-similarity assumption implies that this section is
extended conically fore and aft. A section of a typical grid is
shown in Fig. 2. All calculations were carried out on a grid of
128 x 128 cells. In all of the plots, the £ and 77 coordinates are
normalized by the value of £ at the leading edge of the
uncambered wing (i.e., cot A).

Experimental Setup and Models
The experimental results in this paper are from a series of

tests performed in the spring of 1985 at NASA Langley
Research Center. The experimental setup is described fully
elsewhere.18'1?

The models consisted of a series of four delta wings, three
with camber and one without, each with a leading-edge sweep
of 75 deg and the same upper surface wetted area. The
reference flat delta wing had a span of 18 in. and a length of
33.588 in. Wing camber was generated for the other three
wings by a deflection of the outboard 30% of the local wing
semispan to angles of 5, 10, and 15 deg, measured in the
streamwise direction. To minimize the effect of airfoil shape
and thickness, the leading edge was made sharp (10 deg angle
normal to the wing leading edge located on the lower surface)
and the upper surface was flat. A minimum balance housing
was incorporated into the model.

The leeward surface of each model was instrumented with
six semispan rows of 19 evenly spaced pressure orifices located
at 10, 20, 30, 60, 80, and 90% of the model length. Pressure
orifices were distributed over the semispan of all wings at
equal distances measured along the model upper surface from
0 to 90% of the local semispan. Pressure data were obtained
from a scanning valve pressure transducer mounted external
to the wind tunnel.

The models were connected to the permanent model-actuat-
ing system of the tunnel by a six-component strain gage
balance and sting arrangement. The balance was housed in a
minimum body that was symmetrically integrated into the
wing geometry. During the test, the angle of attack was
measured with an accelerometer located in the permanent
model-actuating system and was corrected for tunnel flow
angularity and sting deflection. Force and moment data were
corrected to freestream static pressure at the balance chamber.

The tests were conducted in the low Mach number test
section of the Langley Unitary Plan Wind Tunnel, which is a
variable Mach number, variable pressure, continuous-flow,
supersonic tunnel. The test section is approximately 4 ft X 4
ft X 7 ft long. This facility is described in more detail by
Jackson et al.20 The nominal Reynolds number was 2 X 106/ft.
To ensure fully turbulent boundary-layer flow over the model
at attached flow conditions, according to the guidelines set
forth by Braslow and Knox,21 transition strips composed of
#60 carborundum grit were sprinkled on the upper surface
0.2 in. behind the model leading edge (measured normal to the
leading edge). The transition strips were approximately 0.0625
in. wide.

Results
The cases chosen for study in this paper are outlined in

Table 1. They were chosen so as to show the effects of Mach
number, angle of attack, and flap angle on the flowfield. Both
nominal and actual angle-of-attack values are given in Table
1; the computations were carried out at the actual angle of
attack for each case.

Case 1: M = 1.7, a = 4 deg, 8 = 5 deg
The computational and experimental results for this case

are presented in Figs. 3 and 4. Figure 3 shows the contours of
total pressure loss in the computed solution. This parameter
turns out to be a useful one for vortical Euler solutions, since
a vortex or vortex sheet is accompanied by a corresponding
total pressure loss.12 This particular plot, therefore, implies a
sheet emanating from the leading edge, reattaching approxi-
mately halfway up the flap, and separating again at the hinge
line. There is a vortex that covers the outboard half of the
flap, and one on the portion of the wing inboard of the hinge
line. Although the vapor screen (inset in Fig. 3) barely shows
evidence of either vortex, the experimentally measured surface
pressures (symbols in Fig. 4) show evidence of the leading-edge
separation and the reattachment on the flap. There does not
seem to be evidence of a vortex over the portion of the wing
inboard of the hinge line in the measured surface pressure
distribution. The computed surface pressures (the solid line in
Fig. 4) overpredict the suction peaks on the wing and the flap.

Case 2: M = 1.7, a = 4 deg, 8 = 10 deg
The computational and experimental results for this case

are shown in Figs. 5 and 6. The total pressure loss contours
(Fig. 5) show a shear layer, generated at the leading edge. The
shear layer is convected along the flap, separating at the hinge
line to form a vortex that resides inboard of the hinge. This
vortex is visible in the vapor screen (inset in Fig. 5). The
existence of a shear layer, as opposed to a vortex, on the flap
is substantiated by the lack of a suction peak in either the
experimental or computed surface pressure (Fig. 6). The

Fig. 2 Detail of typical grid.

Table 1 Test cases

Case

1
2
3
4
5
6

M

1.7
—
—
—
2.4
—

<*nom> deS

4
—

8
—
4

12

<*act,deg
4.30
4.20
8.84
8.68
3.84

12.68

5, deg

5
10

5
10
10
10
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Fig. 3 Case 1: total pressure loss contours and vapor screen. Fig. 5 Case 2: total pressure loss contours and vapor screen.

M - 1.7 " ALPHA - 4 *» DELTA - 5
PRESSURE COEFFICIENT VS XI - COMPARISON

M - 1.7 ** ALPHA - 4 » DELTA - 10
PRESSURE COEFFIOEMr VS XI - COMPARISON

0.00 0.15 030 0.45 OBO 0.75 050 1.05 1.20 0.00 0.15 030 0.45 0.60 0.75 0.90 1.05

Fig. 4 Case 1: surface pressure coefficient comparison. Fig. 6 Case 2: surface pressure coefficient comparison.

surface pressure coefficients compare well on the flap and at
the leeward symmetry line. The computation shows a spike in
the surface pressure coefficient at the hinge line that is spuri-
ous. This effect shows up to a greater or lesser extent in all of
the vortex flap calculations. The experimental surface pres-
sures (symbols) show a secondary suction peak, just inboard
of the hinge, which is not predicted by the computation (solid
line). The computed primary suction peak is stronger than
that seen experimentally. The fact that the Euler solution

predicts a primary suction peak that is farther outboard and
stronger than that seen experimentally is characteristic of the
inviscid model, and has been noted elsewhere.6 It will be
observed in most of the results presented here.

Case 3: M = 1.7, a = 8 deg, 8 = 5 deg

The computational and experimental results for this case
are shown in Figs. 7 and 8. The total pressure loss contours
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(Fig. 7) indicate a sheet emanating from the leading edge,
rolling up into a vortex that straddles the hinge line. There is
also evidence of a vortex of opposite sense on the flap. The
vapor screen (inset in Fig. 7) shows a large leading-edge vortex
that straddles the hinge. Details on the flap cannot be made
out. There is a vortex on the flap, seen in both the experimen-
tal and computed surface pressures (Fig. 8). The surface
pressures in this case agree quite well, except in the immediate
vicinity of the hinge. The Euler calculations predict the vortex
too far outboard. This was the only case for which the
computations were difficult to converge to a steady state.

Case 4: M = 1.7, a = 8 deg, 8 = 10 deg
Figures 9 and 10 show the computational and experimental

results for this case. The total pressure loss contours (Fig. 9)
show two distinguishable sets of closed contours, one directly
above the flap and the other immediately inboard of the hinge
line. The vapor screen for this case (inset in Fig. 9) is hard to
read, but suggests that the core of the vortex is farther inboard
than predicted. The surface pressure coefficient comparison
(Fig. 10), however, shows that the location of the two vortices
is predicted correctly, but the suction peaks are overpredicted.
Again, the surface pressure spike seen at the hinge line in the
computations does not appear in the measurements.

Case 5: M = 2.4, a = 4 deg, 8 = 10 deg
The computational and experimental results for this case

are shown in Figs. 11-14. The total pressure loss contours
show an entirely different character than those of any of the
other cases. There is a set of close contours inboard of the
hinge, suggesting a vortex that resides inboard of the hinge,
but there is no loss generated at the leading edge. This
suggests that the flow is almost exactly tangent to the leading
edge. The crossflow streamlines (Fig. 12) show this to be the

case. The hinge-line vortex is clear in the vapor screen (inset
in Fig. 11). There is no evidence of a sheet on the flap. The
crossflow velocity vectors (Fig. 13) show both the hinge-line
vortex and the lack of shear on the flap. The surface pressure
comparison is good on the flap and near the symmetry line
(Fig. 14). The suction peak is overpredicted and placed too far
outboard.
Case 6: M = 2.4, a = 12 deg, 8 = 10 deg

Figures 15-18 present the computational and experimental
results for this case. This case differs from the other in that

M - 1.7 ** ALPHA - 8 «* DELTA - 5
PRESSURE COEFFICIENT VS XI - COMPARISON

0.75 0.90 1.05 1.20

Fig. 8 Case 3: surface pressure coefficient comparison.

INC- 0.500E-01

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 0-00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20

Fig. 7 Case 3: total pressure loss contours and vapor screen. Fig. 9 Case 4: total pressure loss contours and vapor screen.
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M - 1.7 ** ALPHA - 8 •* DELTA - 10
T VS XI - COMPARSON

M-2A ** ALPHA-4 •* DELTA-10
CROSS-FLOW STREAMUNES

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20

Fig. 10 Case 4: surface pressure coefficient comparison.

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05

Fig. 12 Case 5: crossflow streamlines.

M-2.4 ** ALPHA-4 ** DELTA-10
CROSS-FLOW VELOCITY VECTOR PLOT

M-2A » ALPHA-4 « DELTA-10

Fig. 11 Case 5: total pressure loss contours and vapor screen.

crossflow shocks have formed under the vortex and above the
feeding sheet. There is a vortex on the flap, a primary vortex
above the inboard portion of the wing, and a crossflow shock
under the primary vortex. There is also evidence in the total
pressure loss contours (Fig. 15) of a small vortical region just
inboard of the hinge, below the sheet that feeds the primary
vortex. In the vapor screen (inset in Fig. 15), the sheet and the
primary vortex are visible, and there is an indication of a sheet
or a vortex on the flap. The crossflow shock above the sheet
feeding the vortex can be seen. The crossflow velocity vectors

0.2 0.3 0.4 05 0.6 0.7 0.8 0.!

Fig. 13 Case 5: crossflow velocity vectors.

U-2A « ALPHA-4 » DELTA-10
PRESSURE COEFRCBfT VS XI - COMPARBON

0.15 030 0.45 0.60 0.75 0.90

Fig. 14 Case 5: surface pressure coefficient comparison.

(Fig. 16) show the vortices and the shock clearly, and the
small vortical region just inboard of the hinge. It is interesting
to note that, in the computed solution, the reverse flow on the
flap is really an extension of the primary vortex. The com-
puted crossflow is supersonic above and below both vortices,
and reaches a Mach number of 1.5 inboard of the crossflow
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M-2.4 «* ALPHA-12 •» DELTA-10
MCF

M-Z4 ** ALPHA-12 ** DELTA-10
PT LOSS

INC- 0.500E-01

Fig. 15 Case 6: total pressure loss contours and vapor screen.

M-2.4 ** ALPHA-12 »* DELTA-10
CROSS-FLOW VELOCITY VECTOR PLOT

Fig. 16 Case 6: crossflow velocity vectors.

shock (Fig. 17). The measured surface pressure coefficient
(Fig. 18) does not show evidence of a crossflow shock. This
could be due to the fact that the Euler calculations overpredict
the expansion under the vortex. Elsewhere, the surface pres-
sures agree well.
Lift Coefficient Calculation

Figure 19 is a plot of the lift coefficient as a function of a
for three cases: M = 1.7 and 8 = 5 deg; M = 2.7 and 8 = 10

Fig. 17 Case 6: crossflow Mach number contours.

M-2.4 « ALPHA-12 ** DELTA-10
„. PRESSURE COEFFICIENT VS XI - COMPARISON

3-

0.45 0.60

Fig. 18 Case 6: surface pressure coefficient comparison.

LIFT COEFFICIENT VS ALPHA - COMPARISON

Fig. 19 C7 vs a.

deg; M = 2.4 and 8 = 10 deg. The lines are the experimental
data, constructed from 13 data points each. The M=1.7,
8 = 5 deg data is offset by - 0.2 on the Cl axis, and the
M= 2.4,8 = 10 deg data is offset by +0.2 on the C/ axis to
keep the three lines from falling on top of each other. The
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symbols represent the computed lift coefficients, and are offset
in the same manner as the experimental data. As can be seen,
the lifts compare well, with the computations slightly overpre-
dicting the lift at the lower angles of attack.

Conclusions and Discussion
The detailed comparison of seven cases serves to assess the

strengths and weaknesses of an Euler equation model for
vortex-flap studies. The strengths are that the total pressure
loss contours and the crossflow velocity vectors indicate the
same flow features that the vapor screens and tufts do, and the
lift coefficients are in good agreement with experiment. The
surface pressures agree well, but two general trends can be
seen: the suction peak tends to be overpredicted, and the
vortex tends to be predicted too far outboard. Although
Navier-Stokes solvers are necessary to calculate moment and
drag coefficients, the Euler methods, which are much less
expensive computationally, show promise as a tool in under-
standing leading-edge vortex flows. To illustrate the low com-
putational cost of these solutions, all of the computational
and graphical analysis for this paper was done on a VAXSTA-
TION II at the rate of about one case per day.

It is clear that a variety of flow structures are possible, and
in some cases they are quite sensitive to angle of attack and
flap angle. It appears that only a narrow range of these
parameters will lead to a vortex being contained on the flap.
The reliability of the Euler solutions in predicting whether the
vortex resides on the flap, straddles the hinge, or resides
inboard of the hinge indicates that the Euler solver could
provide a good preliminary design tool for vortex-flap geome-
tries. Detailed force and moment predictions would follow
with a Navier-Stokes model.

The solutions were insensitive to computational parameters;
grid refinement had the most effect on the solutions. The mesh
refinement mostly acts to steepen up gradients in the flowfield.
The suction peak is more pronounced on the finer meshes.
Also, the pressure spike seen at the hinge in most of the
calculations becomes more localized on the finer meshes. A
look at results on a coarser mesh indicate that refinement will
have little effect on the lift, less than a 1% change by refining
the mesh by a factor of two in each direction.

In summary, the comparisons between the wind-tunnel data
and the conical Euler solutions given in this paper show the
strengths and weaknesses of the conical Euler model. The
model tends to overpredict the suction, due to the primary
vortex and the compression at the hinge line, but still gives a
good estimate of the lift. Although it cannot model viscous
effects, most notably the boundary layer and the secondary
vortex, it does model the gross features of the flow quite well.
Clearly, a viscous model is needed to examine the hinge line,
the secondary vortex or the boundary layer, or to calculate
drag or moment coefficients. Also, a three-dimensional model
would be needed to study any effects at the apex or trailing
edge of the wing, or any of the effects, because the wing is not
truly conical. The conical Euler model is also limited in that it
cannot be used to study flow instabilities or other unsteady
effects. However, the conical Euler solutions can be a power-
ful tool in studying the physics of these flows.
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